Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.01.08.24301002

ABSTRACT

The spike glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to accumulate substitutions, leading to breakthrough infections of vaccinated individuals and prompting the development of updated booster vaccines. Here, we determined the specificity and functionality of antibody and B cell responses following exposure to BA.5 and XBB variants in individuals who received ancestral SARS-CoV-2 mRNA vaccines. BA.5 exposures elicited antibody responses that primarily targeted epitopes conserved between the BA.5 and ancestral spike, with poor reactivity to the XBB.1.5 variant. XBB exposures also elicited antibody responses that targeted epitopes conserved between the XBB.1.5 and ancestral spike. However, unlike BA.5, a single XBB exposure elicited low levels of XBB.1.5-specific antibodies and B cells in some individuals. Pre-existing cross-reactive B cells and antibodies were correlated with stronger overall responses to XBB but weaker XBB-specific responses, suggesting that baseline immunity influences the activation of variant-specific SARS-CoV-2 responses. HighlightsO_LIVariant breakthrough infections boost ancestral cross-reactive antibodies and B cells C_LIO_LIFirst and second BA.5 exposures fail to elicit variant-specific antibodies and B cells C_LIO_LIXBB infections and monovalent vaccinations elicit XBB.1.5-specific responses in some individuals C_LIO_LIXBB.1.5-specific responses correlate with low levels of pre-existing humoral immunity C_LI


Subject(s)
Coronavirus Infections
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.05.527215

ABSTRACT

SARS-CoV-2 infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened Spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific CD4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production, and primary responses to non-Spike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.


Subject(s)
COVID-19 , Breakthrough Pain
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.28.486152

ABSTRACT

While humoral immune responses to infection or vaccination with ancestral SARS-CoV-2 have been well-characterized, responses elicited by infection with variants are less understood. Here we characterized the repertoire, epitope specificity, and cross-reactivity of antibodies elicited by Beta and Gamma variant infection compared to ancestral virus. We developed a high-throughput approach to obtain single-cell immunoglobulin sequences and isolate monoclonal antibodies for functional assessment. Spike-, RBD- and NTD-specific antibodies elicited by Beta- or Gamma-infection exhibited a remarkably similar hierarchy of epitope immunodominance for RBD and convergent V gene usage when compared to ancestral virus infection. Additionally, similar public B cell clones were elicited regardless of infecting variant. These convergent responses may account for the broad cross-reactivity and continued efficacy of vaccines based on a single ancestral variant.


Subject(s)
Tumor Virus Infections
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.11.456015

ABSTRACT

Neutralizing antibody responses gradually wane after vaccination with mRNA-1273 against several variants of concern (VOC), and additional boost vaccinations may be required to sustain immunity and protection. Here, we evaluated the immune responses in nonhuman primates that received 100 {micro}g of mRNA-1273 vaccine at 0 and 4 weeks and were boosted at week 29 with mRNA-1273 (homologous) or mRNA-1273.{beta} (heterologous), which encompasses the spike sequence of the B.1.351 (beta or {beta}) variant. Reciprocal ID50 pseudovirus neutralizing antibody geometric mean titers (GMT) against live SARS-CoV-2 D614G and the {beta} variant, were 4700 and 765, respectively, at week 6, the peak of primary response, and 644 and 553, respectively, at a 5-month post-vaccination memory time point. Two weeks following homologous or heterologous boost {beta}-specific reciprocal ID50 GMT were 5000 and 3000, respectively. At week 38, animals were challenged in the upper and lower airway with the {beta} variant. Two days post-challenge, viral replication was low to undetectable in both BAL and nasal swabs in most of the boosted animals. These data show that boosting with the homologous mRNA-1273 vaccine six months after primary immunization provides up to a 20-fold increase in neutralizing antibody responses across all VOC, which may be required to sustain high-level protection against severe disease, especially for at-risk populations. One-sentence summarymRNA-1273 boosted nonhuman primates have increased immune responses and are protected against SARS-CoV-2 beta infection.


Subject(s)
Severe Acute Respiratory Syndrome
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.21.445189

ABSTRACT

Background: Vaccine efficacy against the B.1.351 variant following mRNA-1273 vaccination in humans has not been determined. Nonhuman primates (NHP) are a useful model for demonstrating whether mRNA-1273 mediates protection against B.1.351. Methods: Nonhuman primates received 30 or 100 microgram of mRNA-1273 as a prime-boost vaccine at 0 and 4 weeks, a single immunization of 30 microgram at week 0, or no vaccine. Antibody and T cell responses were assessed in blood, bronchioalveolar lavages (BAL), and nasal washes. Viral replication in BAL and nasal swabs were determined by qRT-PCR for sgRNA, and histopathology and viral antigen quantification were performed on lung tissue post-challenge. Results: Eight weeks post-boost, 100 microgram x2 of mRNA-1273 induced reciprocal ID50 neutralizing geometric mean titers against live SARS-CoV-2 D614G and B.1.351 of 3300 and 240, respectively, and 430 and 84 for the 30 microgram x2 group. There were no detectable neutralizing antibodies against B.1351 after the single immunization of 30 microgram. On day 2 following B.1.351 challenge, sgRNA in BAL was undetectable in 6 of 8 NHP that received 100 microgram x2 of mRNA-1273, and there was a ~2-log reduction in sgRNA in NHP that received two doses of 30 microgram compared to controls. In nasal swabs, there was a 1-log10 reduction observed in the 100 microgram x2 group. There was limited inflammation or viral antigen in lungs of vaccinated NHP post-challenge. Conclusions: Immunization with two doses of mRNA-1273 achieves effective immunity that rapidly controls lower and upper airway viral replication against the B.1.351 variant in NHP.


Subject(s)
Inflammation
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.02.433390

ABSTRACT

Adjuvanted soluble protein vaccines have been used extensively in humans for protection against various viral infections based on their robust induction of antibody responses. Here, soluble prefusion-stabilized spike trimers (preS dTM) from the severe acute respiratory syndrome coronavirus (SARS-CoV-2) were formulated with the adjuvant AS03 and administered twice to nonhuman primates (NHP). Binding and functional neutralization assays and systems serology revealed that NHP developed AS03-dependent multi-functional humoral responses that targeted multiple spike domains and bound to a variety of antibody FC receptors mediating effector functions in vitro. Pseudovirus and live virus neutralizing IC50 titers were on average greater than 1000 and significantly higher than a panel of human convalescent sera. NHP were challenged intranasally and intratracheally with a high dose (3x106 PFU) of SARS-CoV-2 (USA-WA1/2020 isolate). Two days post-challenge, vaccinated NHP showed rapid control of viral replication in both the upper and lower airways. Notably, vaccinated NHP also had increased spike-specific IgG antibody responses in the lung as early as 2 days post challenge. Moreover, vaccine-induced IgG mediated protection from SARS-CoV-2 challenge following passive transfer to hamsters. These data show that antibodies induced by the AS03-adjuvanted preS dTM vaccine are sufficient to mediate protection against SARS-CoV-2 and support the evaluation of this vaccine in human clinical trials.


Subject(s)
Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL